A Computational Investigation of Premixed Lean Diesel Combustion - Characteristics of Fuel-Air Mixture Formation, Combustion and Emissions

Paper #:
  • 1999-01-0229

Published:
  • 1999-03-01
Citation:
Miyamoto, T., Harada, A., Sasaki, S., Akagawa, H. et al., "A Computational Investigation of Premixed Lean Diesel Combustion - Characteristics of Fuel-Air Mixture Formation, Combustion and Emissions," SAE Technical Paper 1999-01-0229, 1999, https://doi.org/10.4271/1999-01-0229.
Pages:
16
Abstract:
The effects of fuel injection timing on fuel-air mixture formation, combustion and emissions for a PREmixed lean DIesel Combustion (PREDIC) engine has been studied numerically by the KIVA II modeling package. The software was modified with an improved autoignition and combustion submodel, which describes the formation of combustible or ignitable fuel-air mixtures by turbulent mixing, and describes four chemical reactions, including low-temperature oxidation. The results indicate that the present computational model reproduces major features of two-stage autoignition and experimentally observed trends in NO and unburned fuel emissions. The relationships among in-cylinder distributions of fuel sprays, fuel-air equivalence ratio, temperature and mass fractions of NO and unburned fuel were demonstrated by graphically imaged results. A method of fuel-air mixture characterization has been introduced and used to analyze the numerical results. This method defines the average value of physical quantities in the fuel-air mixture, and the size or volume of the fuel-air mixture region. The results obtained by this characterization method indicate that the advantage of extremely early fuel injection for lean mixture formation consists of not only a longer mixture formation period, but also the possibility of greater mixture penetration.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Training / Education
2009-12-15
Article
2017-03-13
Training / Education
2018-02-05
Training / Education
2011-04-12
Training / Education
2018-06-04