Electromechanical Active Suspension Demonstration for Off-Road Vehicles

Paper #:
  • 2000-01-0102

Published:
  • 2000-03-06
Citation:
Weeks, D., Beno, J., Guenin, A., and Bresie, D., "Electromechanical Active Suspension Demonstration for Off-Road Vehicles," SAE Technical Paper 2000-01-0102, 2000, https://doi.org/10.4271/2000-01-0102.
Pages:
12
Abstract:
1 The University of Texas Center for Electromechanics (UT-CEM) has been developing active suspension technology for off-road and on-road vehicles since 1993. The UT-CEM approach employs fully controlled electromechanical (EM) actuators to control vehicle dynamics and passive springs to efficiently support vehicle static weight. The program has completed three phases (full scale proof-of-principle demonstration on a quarter-car test rig; algorithm development on a four-corner test rig; and advanced EM linear actuator development) and is engaged in a full vehicle demonstration phase. Two full vehicle demonstrations are in progress: an off-road demonstration on a high mobility multiwheeled vehicle (HMMWV) and an on-road demonstration on a transit bus. HMMWV test results are indicating significant reductions in vehicle sprung mass accelerations with simultaneous increases in cross-country speed when compared to conventional passive suspension systems.Additionally, original projections of low power requirements for suspension actuators are being confirmed. The 3,400 kg (3.75 ton) vehicle being tested utilizes a 5 kW alternator to provide suspension power. Power conditioning circuits limit the continuous deliverable power to 4 kW, which corresponds to 1.2 kW/metric ton (1.4 hp/ton).
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Article
2017-03-13
Training / Education
2013-02-20