Optimizing Vehicle Life Using Life Cycle Energy Analysis and Dynamic Replacement Modeling

Paper #:
  • 2000-01-1499

Published:
  • 2000-04-26
DOI:
  • 10.4271/2000-01-1499
Citation:
Kim, H., Keoleian, G., Spatari, S., and Bulkley, J., "Optimizing Vehicle Life Using Life Cycle Energy Analysis and Dynamic Replacement Modeling," SAE Technical Paper 2000-01-1499, 2000, https://doi.org/10.4271/2000-01-1499.
Pages:
11
Abstract:
A novel application in the field of Life Cycle Assessment is presented that investigates optimal vehicle retirement timing and design life. This study integrates Life Cycle Energy Analysis (LCEA) with Dynamic Replacement Modeling and quantifies the energy tradeoffs between operating an older vehicle versus replacing it with a new more energy efficient model. The decision to keep or replace a vehicle to minimizes life cycle energy consumption is influenced by several factors including vehicle production energy, current vehicle's fuel economy and its deterioration with age, the improvement in fuel economy technology of new model vehicles and annual vehicle miles traveled (VMT). Model simulations explore vehicle replacement under incremental improvements in vehicle technology and leapfrog technology improvements such as with the PNGV (Partnership for a New Generation of Vehicles). Preliminary results indicate that the optimal life of a 1995 mid-sized vehicle for baseline deterioration and annual VMT of 11,200 miles spans from 7 to 13 years based on a 26 year time horizon with two or three vehicle replacements. For this case, the cumulative life cycle energy ranged from 2381 to 1794 GJ.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Video
2017-02-03