Browse Publications Technical Papers 2000-01-2409
2000-07-10

Effect on Noncondensible Gas and Evaporator Mass on Loop Heat Pipe Performance 2000-01-2409

Loop Heat Pipes (LHPs) are passive two-phase heat transport devices that have been baselined for many spacecraft thermal management applications. The design life of a spacecraft can extend to 15 years or longer, thus requiring a robust thermal management system. Based on conventional aluminum/ammonia heat pipe experience, there exists a potential for the generation of noncondensible gas in LHPs over the spacecraft lifetime. In addition, some applications would have the LHP evaporator attached directly to spacecraft equipment having large thermal mass.
To address the potential issues associated with LHP operation with noncondensible gas and large thermal mass attached to the evaporator, a test program was implemented to examine the effect of mass and gas on ammonia LHP performance. Many laboratory test programs for LHPs have heat delivered to the evaporator through light-weight aluminum heater blocks. In order to represent realistic applications, an LHP was tested with additional mass attached to the evaporator. To further simulate potential end-of-life LHP performance, noncondensible gas was also introduced into the loop. This paper presents the test results and the effects on LHP performance when tested with both large evaporator mass and substantial noncondensible gas.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Parametric Shielding Strategies for Jupiter Magnetospheric Missions

2005-01-2834

View Details

TECHNICAL PAPER

Nanoparticle-enhanced Heat Transfer Fluids for Spacecraft Thermal Control Systems

2006-01-2264

View Details

TECHNICAL PAPER

Membrane-based Microfluidic Devices in the Design of a Space Compatible Carbon Analyzer

2000-01-2516

View Details

X