Browse Publications Technical Papers 2000-01-SC21
2000-11-01

Development and Validation of a Pedestrian Lower Limb Non-Linear 3- D Finite Element Model 2000-01-SC21

Lower limb injury is becoming an increasingly important concern in vehicle safety for both occupants and pedestrians. To enable vehicle manufacturers to better understand the biomechanical effects of design changes, it is deemed beneficial to employ a biomechanically fidelic finite element model of the human lower limb.
The model developed in this study includes long bones (tibia, fibula, femur) and flat bone (patella) as deformable bodies. The pelvis and foot bones are modeled as rigid bodies connected to the femur and tibia/fibula via rotational spring-dashpots. The knee is defined by scanned bone surface geometry and is surrounded by the menisci, major ligaments, and patellar tendon. Finite elements used to model include 6- and 8-node solids for cartilage, menisci, surrounding muscles, and cancellous bone; 3- and 4-node shells for skin and cortical bone; and nonlinear spring-dashpots for ligaments. Anatomical, physiological, and material properties data are from the literature while the bone surface geometry was scanned by a commercial source.
Validation against published cadaver test results consisted of tibia and femur 3-point bending (lateral-medial and anterior-posterior) and whole limb lateral knee shear. Validation was performed under both static and dynamic loading conditions, until bone failure or ligament rupture. Additional dynamic validation with the lower limb in a seated orientation has not been completed, limiting current applications to the pedestrian impact condition. The validated models were employed to examine the effect of axial compressive force (the physiological condition) on tibia and femur lateral-medial and anterior- posterior bending under static conditions.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Tibia Bending: Strength and Response

851728

View Details

TECHNICAL PAPER

Structural Response of Lower Leg Muscles in Compression: A Low Impact Energy Study Employing Volunteers, Cadavers and the Hybrid III

2002-22-0012

View Details

TECHNICAL PAPER

Ankle Skeletal Injury Predictions Using Anisotropic Inelastic Constitutive Model of Cortical Bone Taking into Account Damage Evolution

2005-22-0007

View Details

X