Browse Publications Technical Papers 2001-01-0609
2001-03-05

Implementation of Fuel Film Compensation Algorithm on the Lamborghini Diablo 6.0 Engine 2001-01-0609

This paper presents the experimental work and the results obtained from the implementation of a transient fuel compensation algorithm for the 6.0-liter V12 high-performance engine that equips the Lamborghini Diablo vehicles. This activity has been carried out as part of an effort aimed at the optimization of the entire fuel injection control system.
In the first part of the paper the tests for fuel film compensator identification are presented and discussed. In this phase the experimental work has been conducted in the test cell. An automatic calibration algorithm was developed to identify the well-known fuel film model X and τ parameters, so as to define their maps as a function of engine speed and intake manifold pressure. The influence of engine coolant temperature has been investigated separately; it will be soon presented together with the air dynamics compensation algorithm. In the second part of the paper, the performance of the fuel dynamics compensation algorithm is analyzed. The measured Air-Fuel Ratio (AFR) distribution, especially during selected portions of the USA driving cycle, has been chosen as a yardstick to evaluate the performance improvement of the new injection control strategy. The experimental tests have been conducted using Lamborghini's chassis dynamometer laboratory. The comparison between the AFR values, measured before and after the introduction of the new strategy using a linear oxygen sensor, clearly shows the efficiency gain in terms of AFR control due to the transient fuel compensation algorithm.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

GT Model for Passive Flapper Exhaust Valve

2006-01-1373

View Details

TECHNICAL PAPER

Air Flow Control Servomechanism for Cooling the Radiator of a Car Engine

2013-01-1296

View Details

TECHNICAL PAPER

Experimental Validation of a Model-Based Water Injection Combustion Control System for On-Board Application

2019-24-0015

View Details

X