Browse Publications Technical Papers 2002-01-2773
2002-10-21

Implementation of Detailed Chemical Mechanisms into Multidimensional CFD Using in situ Adaptive Tabulation: Application to HCCI Engines 2002-01-2773

A storage/retrieval scheme - in situ adaptive tabulation (ISAT) [1] - is used to implement detailed chemistry in a multidimensional engine CFD code. The emphasis is on predicting autoignition in nearly homogeneous and moderately non-homogeneous mixtures (HCCI); preliminary results for highly non-homogeneous direct-injection autoignition also are reported. Speedups approaching a factor of 100 have been realized with ISAT compared to direct integration of the chemical source terms; factors of five-to-ten are more readily obtainable. In the standard ISAT method, table size increases as the square of the number of chemical species in the reaction mechanism; here linear scaling is achieved by limiting the set of independent tabulation variables, while still retaining the full chemical mechanism. A key to effective use of storage/retrieval is judicious specification of the control parameters; guidelines for parameter specification are presented. With this approach, it becomes feasible to use chemical mechanisms involving over 100 species for moderately non-homogeneous systems. Further investigation is required for highly non-homogeneous systems.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

A Global Reaction Model for the HCCI Combustion Process

2004-01-2950

View Details

TECHNICAL PAPER

Application of Converter Efficiency Simulation Tool for Substrate Design

2004-01-1487

View Details

Book
BOOK

High-Temperature Corrosion and Materials Application

View Details

X