Browse Publications Technical Papers 2002-01-2869
2002-10-21

Piston-Liner Crevice Geometry Effect on HCCI Combustion by Multi-Zone Analysis 2002-01-2869

A multi-zone model has been developed that accurately predicts HCCI combustion and emissions. The multi-zone methodology is based on the observation that turbulence does not play a direct role on HCCI combustion. Instead, chemical kinetics dominates the process, with hotter zones reacting first, and then colder zones reacting in rapid succession. Here, the multi-zone model has been applied to analyze the effect of piston crevice geometry on HCCI combustion and emissions. Three different pistons of varying crevice size were analyzed. Crevice sizes were 0.26, 1.3 and 2.1 mm, while a constant compression ratio was maintained (17:1).
The results show that the multi-zone model can predict pressure traces and heat release rates with good accuracy. Combustion efficiency is also predicted with good accuracy for all cases, with a maximum difference of 5% between experimental and numerical results. Carbon monoxide emissions are underpredicted, but the results are better than those obtained in previous publications. The improvement is attributed to the use of a 40-zone model, while previous publications used a 10-zone model. Hydrocarbon emissions are well predicted. For cylinders with wide crevices (1.3 and 2.1 mm), HC emissions do not decrease monotonically as the relative air/fuel ratio (λ) increases. Instead, maximum HC emissions are obtained for an intermediate value of λ. The model predicts this relative air/fuel ratio for maximum HC emissions with very good accuracy. The results show that the multi-zone model can successfully predict the effect of crevice geometry on HCCI combustion, and therefore it has applicability to the design of HCCI engines with optimum characteristics for high efficiency, low emissions and low peak cylinder pressure.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
JOURNAL ARTICLE

Realization of Dual Phase High Temperature Heat Release Combustion of Base Gasoline Blends from Oil Refineries and a Study of HCCI Combustion Processes

2009-01-0298

View Details

TECHNICAL PAPER

A Decoupled Model of Detailed Fluid Mechanics Followed by Detailed Chemical Kinetics for Prediction of Iso-Octane HCCI Combustion

2001-01-3612

View Details

TECHNICAL PAPER

Hydrocarbon Emission Sequence Related to Cylinder Mal-Distribution in a L-Head Engine

940305

View Details

X