Browse Publications Technical Papers 2002-01-2970
2002-11-05

The Efficacy of Using Synthetic Vision Terrain-Textured Images to Improve Pilot Situation Awareness 2002-01-2970

The General Aviation Element of the Aviation Safety Program's Synthetic Vision Systems (SVS) Project is developing technology to eliminate low visibility induced General Aviation (GA) accidents. SVS displays present computer generated 3-dimensional imagery of the surrounding terrain on the Primary Flight Display (PFD) to greatly enhance pilot's situation awareness (SA), reducing or eliminating Controlled Flight into Terrain, as well as Low-Visibility Loss of Control accidents. SVS-conducted research is facilitating development of display concepts that provide the pilot with an unobstructed view of the outside terrain, regardless of weather conditions and time of day. A critical component of SVS displays is the appropriate presentation of terrain to the pilot. An experimental study is being conducted at NASA Langley Research Center (LaRC) to explore and quantify the relationship between the realism of the terrain presentation and resulting enhancements of pilot SA and performance. Composed of complementary simulation and flight test efforts, Terrain Portrayal for Head-Down Displays (TP-HDD) experiments will help researchers evaluate critical terrain portrayal concepts. The experimental effort is to provide data to enable design trades that optimize SVS applications, as well as develop requirements and recommendations to facilitate the certification process.
In this part of the experiment a fixed based flight simulator was equipped with various types of Head Down flight displays, ranging from conventional round dials (typical of most GA aircraft) to glass cockpit style PFD's. The variations of the PFD included an assortment of texturing and Digital Elevation Model (DEM) resolution combinations. A test matrix of 10 terrain display configurations (in addition to the baseline displays) were evaluated by 27 pilots of various backgrounds and experience levels. Qualitative (questionnaires) and quantitative (pilot performance and physiological) data were collected during the experimental runs.
This paper focuses on the experimental set-up and final physiological results of the TP-HDD simulation experiment. The physiological measures of skin temperature, heart rate, and muscle response, show a decreased engagement (while using the synthetic vision displays as compared to the baseline conventional display) of the sympathetic and somatic nervous system responses which, in turn, indicates a reduced level of mental workload. This decreased level of workload is expected to enable improvement in the pilot's situation and terrain awareness.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Augmentation for Synthetic Vision Displays – An Energy Based Approach

2000-01-5518

View Details

TECHNICAL PAPER

Piloted Studies of Enhanced or Synthetic Vision Display Parameters

921970

View Details

TECHNICAL PAPER

Vision 1 Synthetic Vision System

2001-01-2655

View Details

X