Browse Publications Technical Papers 2002-22-0007
2002-11-11

Correlation of an FE Model of the Human Head with Local Brain Motion-Consequences for Injury Prediction 2002-22-0007

A parameterized, or scalable, finite element (FE) model of the human head was developed and validated against the available cadaver experiment data for three impact directions (frontal, occipital and lateral). The brain material properties were modeled using a hyperelastic and viscoelastic constitutive law. The interface between the skull and the brain was modeled in three different ways ranging from purely tied (no-slip) to sliding (free-slip). Two sliding contact definitions were compared with the tied condition. Also, three different stiffness parameters, encompassing the range of published brain tissue properties, were tested. The model using the tied contact definition correlated well with the experimental results for the coup and contrecoup pressures in a frontal impact while the sliding interface models did not. Relative motion between the skull and the brain in low-severity impacts appears to be relatively insensitive to the contact definitions. It is shown that a range of shear stiffness properties for the brain can be used to model the pressure experiments, while relative motion is a more complex measure that is highly sensitive to the brain tissue properties. Smaller relative motion between the brain and skull results from lateral impact than from a frontal or occipital blow for both the experiments and FE simulations. The material properties of brain tissue are important to the characteristics of relative brain-skull motion. The results suggest that significantly lower values of the shear properties of the human brain than currently used in most three-dimensional (3D) FE models today are needed to predict the localized brain response of an impact to the human head.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

In Vivo Measurements of Human Brain Displacement

2004-22-0010

View Details

TECHNICAL PAPER

Pediatric Rotational Inertial Brain Injury: the Relative Influence of Brain Size and Mechanical Properties

99SC23

View Details

TECHNICAL PAPER

Recent Advances in Brain Injury Research: A New Human Head Model Development and Validation

2001-22-0017

View Details

X