Browse Publications Technical Papers 2003-01-0003
2003-03-03

On the Applications of Low-Reynolds Cubic k-εTurbulence Models in 3D Simulations of ICE Intake Flows 2003-01-0003

The evaluation of the steady-flow discharge coefficient of ICE port assemble is known to be very sensitive to the capability of the turbulence sub-models in capturing the boundary layer dynamics. Despite the fact that the intrinsically unsteady phenomena related to flow separation claim for LES approach, the present paper aims to demonstrate that RANS simulation can provide reliable design-oriented results by using low-Reynolds cubic k-ε turbulence models.
Different engine intake port assemblies and pressure drops have been simulated by using the CFD STAR-CD code and numerical results have been compared versus experiments in terms of both global parameters, i.e. the discharge coefficient, and local parameters, by means of static pressure measurements along the intake port just upstream of the valve seat. Computations have been performed by comparing two turbulence models: Low-Reynolds cubic k-ε and High-Reynolds cubic k-ε.
The analysis leaded to remarkable assessments in the definition of a correct and reliable methodology for the evaluation of engine port breathing capabilities. Comparison between numerical results and experiments showed that the low-Reynolds cubic k-ε model is unavoidable to correctly capture the influence of port feature variations on engine permeability. In particular, the deficiencies demonstrated by High-Reynolds cubic k-ε turbulence model in resolving the influence of near-wall shear and adverse pressure gradient effect on boundary layer dynamics are completely overcome by the use of the Low-Reynolds formulation.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Modeling Engine Oil Variable Displacement Vane Pumps in 1D to Predict Performance, Pulsations, and Friction

2014-01-1086

View Details

TECHNICAL PAPER

Combined CFD-Phenomenological Approach to the Analysis of Diesel Sprays under Non-Evaporative Conditions

2008-01-0962

View Details

TECHNICAL PAPER

Investigations of the Rear-End Flow Structures on a Sedan Car

2016-01-1606

View Details

X