Browse Publications Technical Papers 2003-01-0011
2003-03-03

Modeling Autoignition and Engine Knock Under Spark Ignition Conditions 2003-01-0011

A computer model that is able to predict the occurrence of knock in spark ignition engines has been developed and implemented into the KIVA-3V code. Three major sub-models were used to simulate the overall process, namely the spark ignition model, combustion model, and end-gas auto-ignition models. The spark ignition and early flame development is modeled by a particle marker technique to locate the flame kernel. The characteristic-time combustion model is applied to simulate the propagation of the regular flame. The autoignition chemistry in the end-gas was modeled by a reduced chemical kinetics mechanism that is based on the Shell model. The present model was validated by simulating the experimental data in three different engines. The spark ignition and the combustion models were first validated by simulating a premixed Caterpillar engine that was converted to run on propane. Computed cylinder pressure agrees well with the experimental data. To test the performance of the autoignition model, simulations were compared to experimental data of the Sandia Optical Engine, a research engine equipped with four spark plugs and operated with n-butane. The model predicted the pressure history and ignition delay times in the end gas reasonably well. Finally the model was applied to simulate a single cylinder spark-ignition Kohler utility engine that was run at various conditions, including intentional knocking conditions. Different engine speeds were studied and the occurrence of knock was predicted correctly. Furthermore, resonant pressure oscillations in the combustion chamber under knocking conditions were investigated for this engine.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

A Refinement of Flame Propagation Combustion Model for Spark-Ignition Engines

920679

View Details

TECHNICAL PAPER

Design and Validation of a GT Power Model of the CFR Engine towards the Development of a Boosted Octane Number

2018-01-0214

View Details

TECHNICAL PAPER

An Analytical Approach for the Optimization of a SI Engine Performance Including the Consideration of Knock

981463

View Details

X