Predicting the Fuel Economy Impact of “Cold-Start” for Reformed Gasoline Fuel Cell Vehicles

Paper #:
  • 2003-01-2253

  • 2003-06-23
  • 10.4271/2003-01-2253
Wipke, K., Markel, A., Haraldsson, K., and Davis, P., "Predicting the Fuel Economy Impact of “Cold-Start” for Reformed Gasoline Fuel Cell Vehicles," SAE Technical Paper 2003-01-2253, 2003, doi:10.4271/2003-01-2253.
Hydrogen fuel cell vehicles (FCVs) appear to be a promising solution for the future of clean and efficien tpersonal transportation. Issues of how to generate the hydrogen and then store it on-board to provide satisfactory driving range must still be resolved before they can compete with conventional vehicles. Alternatively, FCVs could obtain hydrogen from on-board reforming of gasoline or other fuels such as methanol or ethanol. On-board reformers convert fuel into a hydrogen-rich fuel stream through catalytic reactions in several stages. The high temperatures associated with fuel processing present an engineering challenge to warm up the reformer quickly and efficiently in a vehicle environment. Without a special warm-up phase or vehicle hybridization, the reformer and fuel cell system must provide all power to move the vehicle, including 1/4 power in 30 s, and 1/2 power in 3 min to satisfy the Federal Test Procedure (FTP) cycle demands. If the reformer cannot meet these performance demands, hybridization can be applied. Battery power and energy requirements for a hybrid-reformed gasoline FCV were determined using ADVISOR™ for a range of reformer system warm-up durations (10 to 120 s). Finally, the predicted fuel economy impacts attributable to ""cold-start"" for a range of potential reformer warm-up times and fueling rates for a gasoline-reformed FCV on the FTP cycle are analyzed.
Members save up to 39% off list price.
HTML for Linking to Page
Page URL

Related Items

Technical Paper / Journal Article
Technical Paper / Journal Article