Functional Redundancy Promotes Functional Stability in Diverse Microbial Bioreactor Communities

Paper #:
  • 2003-01-2509

Published:
  • 2003-07-07
DOI:
  • 10.4271/2003-01-2509
Citation:
Mills, A., Herman, J., Hornberger, G., and Ford, R., "Functional Redundancy Promotes Functional Stability in Diverse Microbial Bioreactor Communities," SAE Technical Paper 2003-01-2509, 2003, doi:10.4271/2003-01-2509.
Pages:
7
Abstract:
Strategies for the inoculation of bioreactors for long-term space missions include communities of diverse composition or, alternatively, communities of a few organisms selected for their ability to efficiently catalyze reactions of interest in the reactor. The concept of functional redundancy states that in a diverse community, several different organisms may be present that are capable of effecting processes necessary to the maintenance of the system function. The concept implies that if some members of the community are lost, others will be able to keep the system from failing in the critical reactions that take place therein. In a sewage reactor in the laboratory, a diverse community at steady state was perturbed by elimination of aeration for seven days. Chemical pools (NH4+, NO3-, dissolved O2), pH, and CO2 evolution were monitored before, during, and after the perturbation. CO2 evolution remained relatively stable, throughout the one-month incubation, although there were strong deviations at the time when the oxygen was initially excluded, and again when O2 was reintroduced. During the anoxic period, NO3- disappeared, and ammonia increased substantially, along with the pH. When the aeration was resumed, reactor conditions approached those of the pre-disturbance period. The microbial community, analyzed by TRFLP fingerprinting, changed substantially during the anaerobic period, and changed again when aeration was resumed; however, the final community was not similar in composition to the initial community, even though the functional ability of the post-disturbance community became similar to that of the initial assemblage. We conclude that redundancy of function within the community members accounted for the similarity of function under similar environmental conditions, although the community composition did not recover its original form.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Technical Paper / Journal Article
1917-01-01
Training / Education
2011-04-09
Technical Paper / Journal Article
1962-01-01
Standard
1996-06-01
Technical Paper / Journal Article
1934-01-01
Standard
1958-02-15
Technical Paper / Journal Article
1963-01-01
Book
2004-01-01
Technical Paper / Journal Article
1964-01-01
Technical Paper / Journal Article
1918-01-01
Training / Education
2016-04-30
Technical Paper / Journal Article
1962-01-01
Training / Education
2017-07-31