Modeling of Air-Fuel Mixing in a Two-Stroke Direct Injection Engine

Paper #:
  • 2003-01-3103

Published:
  • 2003-10-27
DOI:
  • 10.4271/2003-01-3103
Citation:
Zeng, Y. and Strauss, S., "Modeling of Air-Fuel Mixing in a Two-Stroke Direct Injection Engine," SAE Technical Paper 2003-01-3103, 2003, doi:10.4271/2003-01-3103.
Pages:
12
Abstract:
This paper presents a numerical study on air-fuel mixing in a two-stroke direct injection spark ignition engine under homogeneous operation. The simulated engine is loop scavenged and uses an outwardly opening swirl injector. A generic mesh-snapping algorithm is developed to enable the moving piston to snap through transfer ports with complicated geometry. A spray model based on Linear Instability Sheet Atomization is used to describe the primary breakup of fuel sprays, and the initial rotational velocity of the conical sheet is determined from a CFD simulation of the nozzle internal flow. A wall film model accounting for the effect of contacting area is also developed to avoid the severe grid-dependence of the original film model in KIVA. Comparisons between simulations and experiments were made for sprays in quiescent ambient conditions, and a good agreement of the spray characteristics was obtained. The simulations were performed for four different injection timings. The model was shown to be capable to predict engine-out unburned hydrocarbon emission. It was also found that the mixture preparation around the spark plug is directly related to the engine-out emission, and leaner mixture tends to yield higher engine-out emission.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Training / Education
2017-09-21
Technical Paper / Journal Article
2010-10-25
Training / Education
1999-09-27
Training / Education
2017-10-03
Technical Paper / Journal Article
2010-10-25
Training / Education
2009-01-22