Browse Publications Technical Papers 2004-01-2553
2004-07-19

Mathematical Modeling of the Two-phase Capillary-pumped Heat Transfer Devices 2004-01-2553

The main objective of this study is to develop a mathematical model for the simulation of the thermal characteristics of two-phase capillary pumped devices. The mathematical model presented in this paper is an extension of the earlier mathematical model developed for a conventional heat pipe. The three-dimensional incompressible energy, momentum and mass conservation equations are solved by using the finite element method. Except in the wick region, the viscous terms in the governing equations are neglected. However, the pressure drops due to frictional losses are introduced. The interface between vapor and liquid phases is assumed static and only converged steady-state solutions are retained. The reservoir dynamic is not modeled. The energy, momentum and mass jump conditions are written across the interface. The resulting set of equations is solved iteratively until the overall mass conservation is satisfied between the evaporator and condenser.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Large-Eddy Simulation of the Flow Around a Ground Vehicle Body

2001-01-0702

View Details

TECHNICAL PAPER

Preliminary Design of Centrifugal Impeller Principal Dimensions for Turbocharging Applications

930193

View Details

TECHNICAL PAPER

Filter Pleating Design for Cabin Air Filtration

960944

View Details

X