Browse Publications Technical Papers 2004-01-3020
2004-10-25

A Thermal Analysis of Active-flow Control on Diesel Engine Aftertreatment 2004-01-3020

One-dimensional transient modeling techniques are adapted to analyze the thermal behavior of lean-burn after-treatment systems when active flow control schemes are applied. The active control schemes include parallel alternating flow, partial restricting flow, and periodic flow reversal (FR) that are found to be especially effective to treat engine exhausts that are difficult to cope with conventional passive flow converters. To diesel particulate filters (DPF), lean NOx traps (LNT), and oxidation converters (OC), the combined use of active flow control schemes are identified to be capable of shifting the exhaust gas temperature, flow rate, and oxygen concentration to more favorable windows for the filtration, conversion, and regeneration processes. Comparison analyses are made between active flow control and passive flow control schemes in investigating the influences of gas flow, heat transfer, chemical reaction, oxygen concentration, and converter properties. Some of the simulation results, such as the periodic flow reversal results, are largely in agreement with the previous empirical observation.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
JOURNAL ARTICLE

Development of a New Metal Substrate for Lean NOx Trap

2008-01-0806

View Details

TECHNICAL PAPER

Development of a Highly Heat-Resistant Metal Supported Catalyst

910615

View Details

TECHNICAL PAPER

Energy Efficiency Analysis of Active-flow Operations in Diesel Engine Aftertreatment

2006-01-3286

View Details

X