Browse Publications Technical Papers 2005-01-2082
2005-05-11

Effects of Injection Timings and Intake Port Flow Control on the In-Cylinder Wetted Fuel Footprints during PFI Engine Startup Process 2005-01-2082

Wall-wetting due to liquid fuel film motion and fuel droplet impingement on combustion chamber walls is a major source of unburned hydrocarbons (UBHC), and is a concern for oil dilution in PFI engines. An experimental study was carried out to investigate the effects of injection timing, a charge motion control device, and the matching of injector with port geometry, on the “footprints” of liquid fuel inside the combustion chamber during the PFI engine starting process. Using a gasoline-soluble dye and filter paper deployed on the cylinder liner and piston top land surfaces to capture the liquid fuel footprints, the effects of the mixture formation processes on the wetted footprints can be qualitatively and quantitatively examined by comparing the wetted footprint locations and their color intensities. Real-time filming of the development of wetted footprints using a high-speed camera can also show the time history of the fuel wetting process inside an optically accessible engine. The results show that the cold-start in-cylinder wetted footprint is quite engine specific, depending on the intake-port to injector matching. The tumble mixture-motion plate inserted in the intake port creates more turbulence and enhances mixing during the intake process, and therefore significantly reduces the wetted fuel footprint. Limited UBHC measurements were also performed on the engine to compare with the imaging results.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

A Study of Cycle-to-Cycle Flow Variations in a Small Spark-Ignition Engine at Low Throttle Opening

2018-32-0035

View Details

TECHNICAL PAPER

An Investigation into the Challenges of Achieving Future Legislative Limits over Euro III and WMTC Drive Cycles for Current State-of-the-Art Motorcycle Technologies

2005-01-2156

View Details

TECHNICAL PAPER

Investigation of Spark Position Effects in a Small Pre-chamber on Ignition and Early Flame Propagation

2000-01-2839

View Details

X