Browse Publications Technical Papers 2005-01-2827
2005-07-11

Mars Exploration Rover Surface Mission Flight Thermal Performance 2005-01-2827

NASA launched two rovers in June and July of 2003 as a part of the Mars Exploration Rover (MER) project. MER-A (Spirit) landed on Mars in Gusev Crater at 15 degrees South latitude and 175 degrees East longitude on January 4, 2004 (Squyres, et al., Dec. 2004). MER-B (Opportunity) landed on Mars in Terra Meridiani at 2 degrees South latitude and 354 degrees East longitude on January 25, 2004 (Squyres, et al., Aug. 2004). Both rovers have well exceeded their design lifetime (90 Sols) by more than a factor of 5. Spirit and Opportunity are still healthy and continue to execute their roving science missions at the time of this writing. This paper discusses rover flight thermal performance during the surface missions of both vehicles, covering roughly the time from the MER-A landing in late Southern Summer (aereocentric longitude, Ls = 328, Sol 1A) through the Southern Winter solstice (Ls = 90, Sol 255A) to nearly Southern Vernal equinox (Ls = 160, Sol 398A).
This paper describes the MER rover thermal design, its implementation and performance on Mars. The rover surface thermal design performance was better than pre-landing predictions. The very successful thermal design allowed a high level of communications immediately after landing without overheating and required a minimal amount of survival heating in the dead of winter.
An analytical thermal model developed for the rover was used to predict surface operations performance. A reduced-node version of this model was integrated into the mission planning tool to achieve the proper balance between: 1) a desired science and communications operating profile, 2) the energy available from the power system and 3) requirements to maintain rover hardware within prescribed temperature limits. One of the more challenging thermal problems during surface operations, predicting the performance of actuator and camera electronics warmup heaters, was automated by using heater lookup tables that were periodically updated based on flight telemetry.
Specific MER rover thermal flight experiences are discussed in this paper. Lessons learned and suggestions for improving future Mars surface vehicle designs are presented.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Depth Dose Exposures in the Magnetosphere of Jupiter at the Icy Moons: Callisto, Ganymede, and Europa

2004-01-2326

View Details

TECHNICAL PAPER

Thermal System Verification and Model Validation for NASA's Cryogenic Passively Cooled James Webb Space Telescope (JWST)

2005-01-3042

View Details

TECHNICAL PAPER

Simulation Driven Design of HVAC Systems under Competing HVAC Noise and Defrost Performance Requirements

2021-01-1020

View Details

X