Browse Publications Technical Papers 2006-01-1088
2006-04-03

Ion Current Signal Interpretation via Artificial Neural Networks for Gasoline HCCI Control 2006-01-1088

The control of Homogeneous Charge Compression Ignition (HCCI) (also known as Controlled Auto Ignition (CAI)) has been a major research topic recently, since this type of combustion has the potential to be highly efficient and to produce low NOx and particulate matter emissions.
Ion current has proven itself as a closed loop control feedback for SI engines. Based on previous work by the authors, ion current was acquired through HCCI operation too, with promising results. However, for best utilization of this feedback signal, advanced interpretation techniques such as artificial neural networks can be used.
In this paper the use of these advanced techniques on experimental data is explored and discussed. The experiments are performed on a single cylinder cam-less (equipped with a Fully Variable Valve Timing (FVVT) system) research engine fueled with commercially available gasoline (95 ON). The results obtained display an improvement in the correlation between characteristics of ion current and cylinder pressure, thus allowing superior monitoring and control of the engine. Peak pressure position can be estimated with sufficient precision for practical applications, thus pushing the HCCI operation closer to its limits.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Analysis of SI Combustion Diagnostics Methods Using Ion-Current Sensing Techniques

2006-01-1345

View Details

TECHNICAL PAPER

AFR Control on a Single Cylinder Engine Using the Ionization Current

980203

View Details

TECHNICAL PAPER

Numerical Estimation of Wiebe Function Parameters Using Artificial Neural Networks in SI Engine

2021-01-0379

View Details

X