Browse Publications Technical Papers 2007-01-0163
2007-04-16

Combustion Modeling of Diesel Combustion with Partially Premixed Conditions 2007-01-0163

Two turbulent combustion modeling approaches, which were large eddy simulations in conjunction with detailed kinetics (LES-CHEMKIN) and Reynolds Averaged Navier Stokes with detailed kinetics (RANS-CHEMKIN), were used to model two partially premixed engine conditions. The results were compared with average pressure and heat release data, as well as images of in-cylinder ignition chemiluminescence and OH radical distributions. Both LES-CHEMKIN and RANS-CHEMKIN match well with experimental average data. However, LES-CHEMKIN has advantages over RANS-CHEMKIN in predicting the details of location of ignition sites, temperature as well as OH radical distributions. Therefore, LES offers more realistic representations of the combustion process. As a further improvement aiming at saving computational cost and accounting for turbulence-chemistry interactions, a flamelet time scale (FTS) combustion model is coupled with CHEMKIN to predict the entire combustion process. In this new approach (i.e. LES-CHEMKIN-FTS), CHEMKIN was responsible for the low-temperature phase to provide sufficient chemical kinetic information whereas the FTS model played its role in the high-temperature phase to account for subgrid mixing-chemistry effects and save CPU time. We showed that LES-CHEMKIN-FTS performed better than LES-CHEMKIN under conventional diesel-type combustion.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Nozzle Effect on High Pressure Diesel Injection

950083

View Details

TECHNICAL PAPER

Use of a Pressure Reactive Piston to Control Diesel PCCI Operation - A Modeling Study

2006-01-0921

View Details

TECHNICAL PAPER

Effect of Cavitation on the Nozzle Outlet Flow, Spray and Flame Formation in a Diesel Engine

2006-01-1391

View Details

X