Browse Publications Technical Papers 2007-01-1297
2007-04-16

Model Reference Adaptive Control of a Pneumatic Valve Actuator for Infinitely Variable Valve Timing and Lift 2007-01-1297

Electro-pneumatic valve actuators are used to eliminate the cam shaft of a traditional internal combustion engine. They are used to control the opening timing, duration, and lift of both intake and exhaust valves. A physics based nonlinear mathematical model called the level one model was built using Newton's law, mass conservation and thermodynamic principles. A control oriented model, the level two model, was created by partially linearizing the level one model for model reference parameter identification. This model reduces computational throughput and enables real-time implementation. A model reference adaptive control system was used to identify the nonlinear parameters that were needed for generating a feedforward control signal. The closed-loop valve lift tracking, valve opening and closing timing control strategies were proposed. The closed-loop lift control algorithm was developed and implemented in a prototype controller, and validated on a valve test bench with multiple reference valve lift set points at both 1200rpm and 5000rpm engine speeds. The experiment results showed that the actual valve lift reached the reference lift within 0.5mm of lift error in one cycle at 1200rpm and in two cycles at 5000rpm. The maximum steady state lift errors are less than 0.4mm at high valve lift and less than 1.3mm at low valve lift. Furthermore, the closed-loop valve lift control improved valve lift repeatability with more than 30% reduction of standard deviation over the open-loop control.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Development of A Control-Oriented Model of Engine, Transmission and Vehicle Systems for Motor Scooter HIL Testing

2009-01-1779

View Details

TECHNICAL PAPER

Residual Gas Fraction Estimation: Application to a GDI Engine with Variable Valve Timing and EGR

2004-01-2943

View Details

TECHNICAL PAPER

Hybrid Air/Fuel Ratio Control Using the Adaptive Estimation and Neural Network

2000-01-1248

View Details

X