Browse Publications Technical Papers 2007-01-1596
2007-04-16

A Control Strategy Based on Exact Linearization for Electromagnetic Valve Actuation 2007-01-1596

Electromagnetic Valve Actuation (EVA) is considered to be a potential substitute of conventional valvetrains for automotive engines. However, valve quiet-seating (soft-landing) is difficult to be achieved. The EVA system and hence its’ mathematic model is nonlinear. Therefore, when linear control is used for EVA, firstly, the model has to be linearized at an equilibrium point through Taylor expansion. Consequently, the linearized model and control are valid only for a small range around the equilibrium point. This paper presents a control strategy for the whole transition of EVA, which combines exact linearization with Linear Quadratic Regulator (LQR). Firstly, the nonlinear EVA model is transformed to be linear in a new coordinate by using exact linearization, so the nonlinear model is not involved. Then the exact-linearized model is used for the EVA control with LQR. In this case, since the model is exactly linear at any point of the transition, the whole transition is within the reach of LQR control. A prototype of EVA developed by authors is controlled with this control strategy. A landing velocity of 0.04m/s is achieved in single transition as well as 0.08m/s in sequence operation.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

NON-POPPET VALVE MOTORS AT THE 1911 OLYMPIA SHOW

120011

View Details

TECHNICAL PAPER

Formula SAE Dual Plenum Induction System Design

2002-01-0457

View Details

TECHNICAL PAPER

Experimental and Numerical Analysis of Charge Motion Characteristics Depending on Intake Valves Actuation Strategies

2005-01-0242

View Details

X