Browse Publications Technical Papers 2007-01-4136
2007-10-29

Combustion and Lift-Off Characteristics of n-Heptane Sprays Using Direct Numerical Simulations 2007-01-4136

Fundamental simulations using DNS type procedures were used to investigate the ignition, combustion characteristics and the lift-off trends of a spatially evolving turbulent liquid fuel jet. In particular, the spatially evolving n-Heptane spray injected in a two-dimensional rectangular domain with an engine like environment was investigated. The computational results were compared to the experimental observations from an optical engine as reported in the literature. It was found that an initial fuel rich combustion downstream of the spray tip is followed by diffusion combustion. Investigations were also made to understand the effects of injection velocity, ambient temperature and the droplet radius on the lift-off length. For each of these parameters three different values in a given range were chosen. For both injection velocity and droplet radius, an increase resulted in a near linear increase in the lift-off length. Changes (increase) in the ambient temperature resulted in a decrease in the lift-off length with the profile following a power law.
Simulations were performed using an enhanced version of the parallel code for turbulent reacting flows, called S3D, which was developed at Sandia National Laboratories at Livermore. The code comprises a DNS quality Eulerian method to solve the carrier gas flow field, while the Lagrangian method is used to track the liquid fuel droplets. Two-way coupling between the liquid and the gas phases were established via the mass, momentum and energy equations. A four step mechanism consisting of 8 species was used to describe the chemical reactions.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

The Autoignition of n-Pentane in a Non-Fired Single Cylinder Engine

932756

View Details

TECHNICAL PAPER

A Consistent Flamelet Model to Describe the Interaction of Combustion Chemistry and Mixing in the Controlled Auto Ignition Regime

2010-01-0181

View Details

TECHNICAL PAPER

A 1D Model for Diesel Sprays under Reacting Conditions

2015-24-2395

View Details

X