Browse Publications Technical Papers 2009-01-0673
2009-04-20

Multi-Zone Kinetic Model of Controlled Auto Ignition Combustion 2009-01-0673

A multi-zone Controlled Auto Ignition (CAI) model for simulating the combustion and emissions has been developed and reported in this paper. The model takes into account the effects of the boundary layer, crevice volume, and blowby. In order to investigate the influences of in-cylinder inhomogeneity, the main cylinder chamber has been divided into multiple core zones with varying temperature and composition. Mass and energy transfer between neighbouring zones were modeled. A reduced chemical kinetic mechanism was implemented in each zone to simulate the CAI combustion chemistry and emission formation. An in-house code, the LUCKS (Loughborough University Chemical Kinetics Simulation), was employed to solve the coupled differential equations of the system. The model was validated against experimental results at various Internal Exhaust Gas Recirculation (IEGR) levels and was then used to analyze the thermal and chemical effect of the IEGR on the CAI combustion. Good agreement between modeling and experimental results in terms of major CAI combustion parameters and emissions (CO, HC, and NOx) has been achieved.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Implementation and Validation of a n-Heptane Kinetic Combustion Model for 3D-CFD Codes by Means of Numerical Calculations and Single Cylinder Engine Experiments

2009-01-0708

View Details

TECHNICAL PAPER

Development of a Spray-Based Phenomenological Soot Model for Diesel Engine Applications

2017-24-0022

View Details

JOURNAL ARTICLE

A 0D Phenomenological Approach to Model Diesel HCCI Combustion with Multi-Injection Strategies Using Probability Density Functions and Detailed Tabulated Chemistry

2009-01-0678

View Details

X