Browse Publications Technical Papers 2009-01-1798
2009-06-15

Modeling, Identification, and Separation of Crankshaft Dynamics in a Light-Duty Diesel Engine 2009-01-1798

Mathematical models of a torque sensor equipped crankshaft in a light-duty diesel engine are identified, validated, and compared. The models are based on in-cylinder pressure and crankshaft torque data collected from a 5-cylinder common-rail diesel engine running at multiple operating points. The work is motivated by the need of a crankshaft model in a closed-loop combustion control system based on crankshaft torque measurements. In such a system a crankshaft model is used in order to separate the measured crankshaft torque into cylinder individual torque contributions. A method for this is described and used for IMEP estimation.
Not surprisingly, the results indicate that higher order models are able to estimate crankshaft torque more accurately than lower order models, even if the differences are small. For IMEP estimation using the cylinder separation method however, these differences have large effects on accuracy. Here, the performance of higher order models is significantly better than for lower order models. Also, models of odd model order perform better than models of even model order. On average, a 9th order model estimates IMEP values to within 2-3% of the reference values.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Event-Based Mean-Value Modeling of DI Diesel Engines for Controller Design

2001-01-1242

View Details

TECHNICAL PAPER

Diesel Combustion and Control Using a Novel Ignition Delay Model

2018-01-1242

View Details

TECHNICAL PAPER

Model-Based Engine Calibration for Best Fuel Efficiency

950983

View Details

X