Browse Publications Technical Papers 2009-01-1799
2009-06-15

Robust Common-Rail Pressure Control for a Diesel-Dual-Fuel Engine Using QFT-Based Controller 2009-01-1799

Despite promising future, the diesel-dual-fuel engine, with diesel as pilot and natural gas as main, abounds with challenges from high NOx emission and knock especially at high speed and low load. To cope with these challenges, variation of common-rail pressure provides another desirable degree of freedom. Nevertheless, crippling with complicated dynamics, pressure wave inside the transporting rail, disturbance from varying of injections, engine speed variation, and actuator limitation, common-rail pressure control has relied on the simple PID to deliver only marginally satisfactory result. Some attempts to achieve better control have resulted in either too complicated or not too robust control system. We devise a controller from the quantitative feedback theory. Besides being able to quantitatively enforce specifications such as tracking, plant input and output disturbance rejections, and stability margin, the controller is designed from a simple model, whose parameters are allowed to be uncertain, hence robustness. The resulting controller has low order and is readily implementable. Experiment with a common-rail system in a Ricardo Hydra engine, modified to run dual fuel, shows the controller’s effectiveness over the PID.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Gain-Scheduling Integrator-Augmented Sliding-Mode Control of Common-Rail Pressure in Diesel-Dual-Fuel Engine

2010-01-1573

View Details

TECHNICAL PAPER

Indicated Cycle Efficiency Improvements of a 4-Stroke, High Compression Ratio, S.I., Opposed-Piston, Sleeve-Valve Engine Using Highly Delayed Spark Timing for Knock Mitigation

2012-01-0378

View Details

TECHNICAL PAPER

Unburned Hydrocarbon Emissions from SI Engines Using Gaseous Fuels

1999-01-0571

View Details

X