Browse Publications Technical Papers 2010-01-0580
2010-04-12

Analysis of Combustion and Particulate Emissions when Hydrogen is Aspirated into a Gasoline Direct Injection Engine 2010-01-0580

A single-cylinder Gasoline Direct Injection Engine (GDI) engine with a centrally mounted spray-guided injection system (150 bar fuel pressure) has been operated with stoichiometric and rich mixtures. The base fuel was 65% iso-octane and 35% toluene; hydrogen was aspirated into a plenum in the induction system, and its equivalence ratios were set to 0, 0.02, 0.05 and 0.1. Ignition timing sweeps were conducted for each operating point.
Combustion was speeded up by adding hydrogen as expected. In consequence the MBT ignition advance was reduced, as were cycle-by-cycle variations in combustion. Adding hydrogen led to the expected reduction in IMEP as the engine was operated at a fixed manifold absolute pressure (MAP). An engine model has also been set up using WAVE.
Particulate Matter (PM) emissions were measured with a Cambustion DMS500 particle sizer. The effect of ignition timing on the PM emissions was marked - retarding the ignition led to a substantial reduction in the PM number emissions, especially for the nucleation mode. Overall, retarding the ignition could lead to more than an order of magnitude reduction in particle number for stoichiometric combustion. For the MBT ignition timing, adding a hydrogen equivalence ratio of 0.1 led to more than an order of magnitude reduction in both the PM number and mass for stoichiometric and rich (lambda = 0.9) combustion.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Investigation of VVT and spark timing on combustion and particle emission from a GDI Engine during transient operation

2014-01-1370

View Details

TECHNICAL PAPER

Experimental Investigation of a Methane-Gasoline Dual-Fuel Combustion in a Small Displacement Optical Engine

2013-24-0046

View Details

JOURNAL ARTICLE

Fuel Pressure and Charge Motion Effects on GDi Engine Particulate Emissions

2015-01-0746

View Details

X