Influence of Inlet Pressure, EGR, Combustion Phasing, Speed and Pilot Ratio on High Load Gasoline Partially Premixed Combustion

Paper #:
  • 2010-01-1471

Published:
  • 2010-05-05
Citation:
Manente, V., Johansson, B., Tunestal, P., and Cannella, W., "Influence of Inlet Pressure, EGR, Combustion Phasing, Speed and Pilot Ratio on High Load Gasoline Partially Premixed Combustion," SAE Technical Paper 2010-01-1471, 2010, https://doi.org/10.4271/2010-01-1471.
Pages:
23
Abstract:
The current research focuses in understanding how inlet pressure, EGR, combustion phasing, engine speed and pilot main ratio are affecting the main parameters of the combustion (e.g. efficiency, NOx, soot, maximum pressure rise rate) in the novel concept of injecting high octane number fuels in partially premixed combustion. The influence of the above mentioned parameters was studied by performing detailed sweeps at 32 bar fuel MEP (c.a. 16-18 bar gross IMEP); three different kinds of gasoline were tested (RON: 99, 89 and 69). The experiments were ran in a single cylinder heavy duty engine; Scania D12. At the end of these sweeps the optimized settings were computed in order to understand how to achieve high efficiency, low emissions and acceptable maximum pressure rise rate. The least square optimization analysis showed that for all the three fuels at this load it is possible to achieve gross indicated efficiency higher than 54 %, maximum pressure rise rate below 15 bar/CAD, NOx below 0.25 g/kWh and soot below 1.50 FSN. Depending on the fuel type, the targets were achieved by using 46-52 % of EGR, single injection, combustion phasing between 2 and 4 TDC and lambda between 1.54 and 1.58.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$28.00
Mail
$28.00
Members save up to 42% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Technical Paper / Journal Article
2011-04-12
Article
2017-07-26
Standard
2017-09-07