Browse Publications Technical Papers 2010-01-1731
2010-11-02

Experimental Validation of a Simple Analytical Model for Specific Heat Capacity of Aqueous Nanofluids 2010-01-1731

The aim of this study is to explore the anomalous variation of thermo-physical properties of aqueous nanofluids. The specific heat of three water-based nanofluids containing silicon dioxide (SiO₂), titanium dioxide (TiO₂), and aluminum oxide (Al₂O₃) nanoparticles were measured using a differential scanning calorimeter (DSC). Measurements were performed over a temperature range of 30°C - 80°C which was chosen to be between melting point and boiling point of water. The experiments were implemented with different sizes of nanoparticles to investigate the effect of the size of nanoparticles on the specific heat of nanofluids. The specific heat of the nanofluids was plotted as a function of the diameter of nanoparticles and the mass concentration of nanoparticles. The results indicate that the specific heat of aqueous nanofluids decreases as the mass concentration of nanoparticles increases from 0.5% to 20%. Moreover, the results show that the specific heat of nanofluids is less sensitive to the variation of the nanoparticle size and more sensitive to the variation of the mass concentration of nanoparticles. A simple analytical model for the specific heat of nanoparticle suspensions in a solvent is proposed to explain the observed behavior. The model accounts for the contribution to the specific heat by an interfacial layer formed at the solid-liquid interface. The predictions from the proposed analytical model for the specific heat of nanofluids are found to be in close agreement with the experimental results.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Shape Memory Alloy Engine

929057

View Details

TECHNICAL PAPER

Plastic Media Blasting - The Maturing of the Technology

910925

View Details

TECHNICAL PAPER

Electrochemical and Corrosion Performance of Zinc-containing Tri-layer Aluminum Brazing Sheet AA7072/3003/4343 in OY Synthetic Water

2005-01-2035

View Details

X