Browse Publications Technical Papers 2010-01-2142
2010-10-25

Simulation of Mild Surge in a Turbocharger Compression System 2010-01-2142

The behavior of the compression system in turbochargers is studied with a one-dimensional engine simulation code. The system consists of an upstream compressor duct open to ambient, a centrifugal compressor, a downstream compressor duct, a plenum, and a throttle valve exhausting to ambient. The compression system is designed such that surge is the low mass flow rate instability mode, as opposed to stall. The compressor performance is represented through an extrapolated steady-state map. Instead of incorporating a turbine into the model, a drive torque is applied to the turbocharger shaft for simplification. Unsteady compression system mild surge physics is then examined computationally by reducing the throttle valve diameter from a stable operating point. Such an increasing resistance decreases the mass flow rate through the compression system and promotes surge. Mild surge is predicted as the mass flow rate is decreased below the stability limit, with oscillations of mass flow rate and pressure exhibited at the Helmholtz resonance frequency of the compression system. The computational results are shown to be able to reproduce the experimental observations available in the literature.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
We also recommend:
JOURNAL ARTICLE

Instabilities at the Low-Flow Range of a Turbocharger Compressor

2013-01-1886

View Details

TECHNICAL PAPER

Development of an Experimental Facility to Characterize Performance, Surge, and Acoustics in Turbochargers

2011-01-1644

View Details

TECHNICAL PAPER

Numerical Study of Ultra Low Solidity Airfoil Diffuser in an Automotive Turbocharger Compressor

2009-01-1470

View Details

X