A New CFD Approach for Assessment of Swirl Flow Pattern in HSDI Diesel Engines

Paper #:
  • 2010-32-0037

Published:
  • 2010-09-28
Citation:
Rezaei, R., Pischinger, S., Ewald, J., and Adomeit, P., "A New CFD Approach for Assessment of Swirl Flow Pattern in HSDI Diesel Engines," SAE Technical Paper 2010-32-0037, 2010, https://doi.org/10.4271/2010-32-0037.
Pages:
13
Abstract:
The fulfillment of the aggravated demands on future small-size High-Speed Direct Injection (HSDI) Diesel engines requires next to the optimization of the injection system and the combustion chamber also the generation of an optimal in-cylinder swirl charge motion.To evaluate different port concepts for modern HSDI Diesel engines, usually quantities as the in-cylinder swirl ratio and the flow coefficient are determined, which are measured on a steady-state flow test bench. It has been shown that different valve lift strategies nominally lead to similar swirl levels. However, significant differences in combustion behavior and engine-out emissions give rise to the assumption that local differences in the in-cylinder flow structure caused by different valve lift strategies have noticeable impact.In this study an additional criterion, the homogeneity of the swirl flow, is introduced and a new approach for a quantitative assessment of swirl flow pattern is presented.Different valve lift strategies were investigated by transient in-cylinder CFD flow simulation, applying both the Reynolds-Averaged Navier Stokes (RANS) equations and the multi-cycle Large Eddy Simulation (LES) approach. The results obtained from the LES multi-cycle approach were averaged and compared with RANS results. An evaluation of different valve strategies using three-dimensional Particle Imaging Velocimetry in a steady-state flow configuration is also presented.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$28.00
Mail
$28.00
Members save up to 42% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Event
2018-04-10
Technical Paper / Journal Article
2011-05-17