Automated IC Engine Model Development with Uncertainty Propagation

Paper #:
  • 2011-01-0237

Published:
  • 2011-04-12
Citation:
Brownbridge, G., Smallbone, A., Phadungsukanan, W., Mosbach, S. et al., "Automated IC Engine Model Development with Uncertainty Propagation," SAE Technical Paper 2011-01-0237, 2011, https://doi.org/10.4271/2011-01-0237.
Pages:
12
Abstract:
This paper describes the development of a novel data model for storing and sharing data obtained from engine experiments, it then outlines a methodology for automatic model development and applies it to a state-of-the-art engine combustion model (including chemical kinetics) to reduce corresponding model parameter uncertainties with respect engine experiments. These challenges are met by adopting the latest developments in the semantic web to create a shared data model resource for the IC engine development community. The relevant data can be extracted and then used to set-up simulations for parameter estimation by passing it to the relevant application models. A methodology for incorporating experimental and model uncertainties into the model optimization procedure is presented.Data from seven operating points have been extracted from the proposed data model and have been incorporated into a state-of-the-art in-cylinder IC engine model through the optimization of model parameters whilst accounting for the model parameter and experimental uncertainties.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Standard
1987-02-01
Book
2012-11-01