Browse Publications Technical Papers 2011-01-0375
2011-04-12

An Analysis for Floating Bearings in a Turbocharger 2011-01-0375

A comprehensive analysis has been performed for floating bearings applied in a turbocharger. It is found that Couette power loss for a full-floating bearing (the floating ring rotates) decreases with increasing inner and outer clearances, while its Poiseuille power loss increases with increasing inner and outer film clearances. In comparison with a semi-floating bearing (the floating ring does not rotate), a full-floating bearing can reduce both Couette and Poiseuille power losses. However, floating bearing is found to have a smaller minimum film thickness for a given dynamic loading from rotor-dynamics. The total power loss reduction for typical full-floating bearings ranges from 13% to 27%, which matches well with some published experimental data. In general, the speed ratio increases with increasing outer film clearance, while it decreases with increasing inner film clearance because of shear stresses on the outer and inner film. The increasing radii ratio slows the floating ring and therefore decreases the cavitation effect in outer film, while the cavitation level in the inner film is not significantly changed. Meanwhile the minimum film thickness in the inner film increases with the increasing speed ratio. It is found that the speed ratio reduces from 0.43 to 0.31 as the shaft speed goes from 15,000 to 60,000 rpm, which is very close to published experimental observations. The behavior of self-excited oil whirl of floating bearings is also modeled and reported. It is found that the eccentricity in the inner film decays or develops much faster than the one in the outer film.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

FLARE: An Integrated Software Package for Friction and Lubrication Analysis of Automotive Engines - Part II: Experimental Validation

920488

View Details

TECHNICAL PAPER

A Lubrication Analysis of Multi Link VCR Engine Components using a Mixed Elasto-Hydrodynamic Lubrication Theory Model

2009-01-1062

View Details

TECHNICAL PAPER

Oil Film Thickness in Engine Main Bearings: Comparison Between Calculation and Experiment by Total Capacitance Method

922345

View Details

X