Browse Publications Technical Papers 2011-01-0456
2011-04-12

AUTOSAR Extensions for Predictable Task Synchronization in Multi-Core ECUs 2011-01-0456

Multi-core processors are becoming increasingly prevalent, with several multi-core solutions being offered for the automotive sector. Recognizing this trend, the AUTomotive Open System ARchitecture (AUTOSAR) standard Version 4.0 has introduced support for multi-core embedded real-time operating systems. A key element of the AUTOSAR multi-core specification is the spinlock mechanism for inter-core task synchronization. In this paper, we study this spinlock mechanism from the standpoint of timing predictability. We describe the timing uncertainties introduced by standard test-and-set spinlock mechanisms, and provide a predictable priority-driven solution for inter-core task synchronization.
The proposed solution is to arbitrate critical sections using the well-established Multi-processor Priority Ceiling Protocol [3], which is the multiprocessor version of the ceiling protocol for uniprocessors [1, 2] used by AUTOSAR. We also present the associated analysis that can be used in conjunction with the AUTOSAR task model to bound the worst-case waiting times for accessing shared resources. The timing predictability provided by our protocol is an important requirement for automotive applications from both certification and validation standpoints.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Multicore Management - A New Approach

2017-01-2104

View Details

TECHNICAL PAPER

Client/Server Architecture-Managing New Technologies for Automotive Embedded Systems-A Joint Project of Daimler-Benz and Ibm

98C014

View Details

TECHNICAL PAPER

Comparison of V10 and V12 F1 Engines

983035

View Details

X