Browse Publications Technical Papers 2011-01-0846
2011-04-12

Laminar Burning Velocity Correlations for Methanol-Air and Ethanol-Air Mixtures Valid at SI Engine Conditions 2011-01-0846

The use of methanol and ethanol in spark-ignition (SI) engines forms a promising approach to decarbonizing transport and securing domestic energy supply. The physico-chemical properties of these fuels enable engines with increased performance and efficiency compared to their fossil fuel counterparts. An engine cycle code valid for alcohol-fuelled engines could help to unlock their full potential. However, the development of such a code is currently hampered by the lack of a suitable correlation for the laminar flame speed of alcohol-air-diluent mixtures. A literature survey showed that none of the existing correlations covers the entire temperature, pressure and mixture composition range as encountered in spark-ignition engines. For this reason, we started working on new correlations based on simulations with a one-dimensional chemical kinetics code.
In this paper the properties of methanol and ethanol are first presented, together with their application in modern SI engines. Then, the published experimental data for the laminar burning velocity are reviewed. Next, the performance of several reaction mechanisms for the oxidation kinetics of methanol- and ethanol-air mixtures is compared. The best performing mechanisms are used to calculate the laminar burning velocity of these mixtures in a wide range of temperatures, pressures and compositions. Finally, based on these calculations, two laminar burning velocity correlations covering the entire operating range of alcohol-fuelled spark-ignition engines, are presented. These correlations can now be implemented in an engine code.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Effects of ETBE and EtOH Blending in Gasoline on PM Emission from a Direct Injection Spark Ignition Vehicle

2007-01-4084

View Details

TECHNICAL PAPER

Spray Characteristics of Methanol-Gasoline Blends Using Ultrasonic Atomizer

922353

View Details

TECHNICAL PAPER

Hydrogen Cars with LH2-Tank, LH2-Pump and Cold GH2-Injection Two-Stroke Engine

820349

View Details

X