Browse Publications Technical Papers 2011-01-0861
2011-04-12

Analytical Evaluation of Propulsion System Architectures for Future Urban Vehicles 2011-01-0861

Today, nearly half of the world population lives in urban areas. As the world population continues to migrate to urban areas for increased economic opportunities, addressing personal mobility challenges such as air pollution, Greenhouse Gases (GHGs) and traffic congestion in these regions will become even a greater challenge especially in rapidly growing nations. Road transportation is a major source of air pollution in urban areas causing numerous health concerns. Improvements in automobile technology over the past several decades have resulted in reducing conventional vehicle tailpipe emissions to exceptionally low levels. This transformation has been attained mainly through advancements in engine and transmission technologies and through partial electrification of vehicles. However, the technological advancements made so far alone will not be able to mitigate the issues due to increasing GHGs and air pollution in urban areas. Electrification of propulsion systems may play a significant role in overcoming the challenges associated with personal urban mobility. Electric vehicles are particularly suited for use in urban areas since city transportation is mainly characterized by relatively short driving distances, low continuous power requirements, long idling times and high availability of regenerative braking energy. These characteristics, when carefully incorporated into the design process, create valuable opportunities for developing clean, efficient and cost effective urban vehicle propulsion systems. In this paper, various urban propulsion systems architectures that can address these challenges are presented. These architectures are incorporated into a vehicle math model and they are analyzed. Various advanced propulsion system architectures are presented and their benefits relative to conventional propulsion systems are assessed. Strengths and weaknesses of different designs are assessed relative to conventional propulsion systems on the basis of metrics such as well-to-wheel energy conversion efficiency, GHG emissions and vehicle functionality.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Route Selection Strategy for Hybrid Vehicles Based on Energy Management and Real Time Drive Cycles

2018-01-0995

View Details

TECHNICAL PAPER

Active Sound Design Methodologies for Hybrid and Electric Vehicles

2021-01-1019

View Details

TECHNICAL PAPER

Well-to-Wheels Analysis of Advanced SUV Fuel Cell Vehicles

2003-01-0415

View Details

X