Browse Publications Technical Papers 2011-01-0893
2011-04-12

Determining Most Energy Efficient Cooling Control Strategy of a Rechargeable Energy Storage System 2011-01-0893

Plug in hybrid electric vehicles (PHEV) and electric vehicles (EV) are using large lithium ion battery packs to store energy for powering electric traction motors. These batteries, or Rechargeable Energy Storage Systems (RESS), have a narrow temperature operating range and require thermal management systems to properly condition the batteries for use in automotive applications. This paper will focus on energy optimization of a RESS cooling system. The battery thermal management system for the General Motors Chevrolet Volt has three distinct modes for battery cooling: active cooling, passive cooling, and bypass. Testing was conducted on each individual thermal cooling mode to optimize, through control models, the energy efficiency of the system with the goal of maximizing electric vehicle range. While the three modes were intended to be mutually exclusive, optimization of the individual modes led to scenarios where all three modes could possibly be utilized depending on driving habits, ambient conditions, and power available. This paper will present the strategies that were used to determine the most energy efficient thermal management system controls for cooling the RESS. This cooling optimization strategy can be applied to current and future battery thermal management systems.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Comparative Study of Thermal Characteristics of Lithium-ion Batteries for Vehicle Applications

2011-01-0668

View Details

TECHNICAL PAPER

Modeling of Battery Pack Thermal System for a Plug-In Hybrid Electric Vehicle

2011-01-0666

View Details

TECHNICAL PAPER

Fault Mitigation and Cell Balancing of High Power Lithium Ion Battery Packs

2010-01-1766

View Details

X