Browse Publications Technical Papers 2011-01-1193
2011-04-12

Assessment of Closed-Loop Combustion Control Capability for Biodiesel Blending Detection and Combustion Impact Mitigation for an Euro5 Automotive Diesel Engine 2011-01-1193

The present paper describes the results of a cooperative research project between GM Powertrain Europe and Istituto Motori - CNR aimed at studying the impact of both fresh and highly oxidized Rapeseed Methyl Ester (RME) at different levels of blending on performance, emissions and fuel consumption of modern automotive diesel engines featuring Closed-Loop Combustion Control (CLCC). In parallel, the capability of this system to detect the level of biodiesel blending through the use of specific detection algorithms was assessed. The tests were performed on the recently released 2.0L Euro5 GM diesel engine for passenger car application equipped with embedded pressure sensors in the glow plugs.
Various blends of fresh and aged RME with reference diesel fuel were tested, notably 20% RME by volume (B20), 50% (B50) and pure RME (B100). The tests on the multi-cylinder engine were carried out in a wide range of engine operating points for the complete characterization of the biodiesel performance in the New European Driving Cycle (NEDC).
The results highlighted that there is not appreciable difference in terms of performance and emission between fresh and oxidized biodiesel, at all levels of blending. On the other hand, the capability of the CLCC control to detect biodiesel blending with reasonable accuracy and to implement the corrective actions for avoiding emission drift and performance losses was successfully demonstrated.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

EFFECTS OF SULFUR IN MOTOR GASOLINE ON ENGINE OPERATION

510179

View Details

TECHNICAL PAPER

Variable Injection Timing Effects on the Performance and Emissions of a Direct Injection Diesel Engine

932385

View Details

TECHNICAL PAPER

Current and Future Light Duty Diesel Engines and Their Fuels

840105

View Details

X