Browse Publications Technical Papers 2011-01-1354
2011-04-12

Characterizing the Influence of EGR and Fuel Pressure on the Emissions in Low Temperature Diesel Combustion 2011-01-1354

In the wake of global focus shifting towards the health and conservation of the planet, greater importance is placed upon the hazardous emissions of our fossil fuels, as well as their finite supply. These two areas remain intense topics of research in order to reduce greenhouse gas emissions and increase the fuel efficiency of vehicles, a sector which is a major contributor to society's global CO₂ emissions and consumer of fossil-fuel resources. A particular solution to this problem is the diesel engine, with its inherently fuel-lean combustion, which gives rise to low CO₂ production and higher efficiencies than other potential powertrain solutions.
Diesel engines, however, typically exhibit higher nitrogen oxides (NOx) and soot engine-out emissions than their gasoline counterparts. NOx is an ingredient to ground-level ozone production and smoke is a possible carcinogen, both of which are facing stricter emissions regulations. The typical diesel engine exhibits a NOx - soot tradeoff where a reduction in NOx results in an increase in soot, and vice versa. There exists the possibility to simultaneously reduce both emissions with the application of low temperature diesel combustion, or LTC. LTC allows for low flame temperatures within the combustion, in order to prohibit both soot and NOx formation, while at the same time allowing for premixed combustion to eliminate fuel-rich combustion zones which further reduces soot formation. While exhibiting great characteristics in simultaneous reductions in nitrogen oxides and soot, LTC faces challenges with carbon monoxide (CO) emissions, hydrocarbon (HC) emissions, penalties in fuel efficiency, and difficulty in attainment during high loads.
The following study examines the characteristics of LTC which contribute to the differences in emissions and efficiency compared to typical conventional diesel combustion. More specifically, key engine parameters which are used to enable LTC, such as EGR and fuel pressure are swept through a full range to determine their effects on each combustion regime. Analysis will focus on comparing both combustion regimes to determine how EGR and fuel pressure relate to lowering NOx and smoke concentrations, and how these relate to penalties in CO and HC concentrations.
This study identifies that with the application of LTC on a conventional combustion diesel engine, a 99% reduction in NO emissions and a 15% simultaneous reduction in smoke can be realized. The typical soot - NO tradeoff is reduced with application of EGR, relative to conventional combustion operation. Further, increasing fuel pressure shows typical increases in NO and decreases in smoke for both LTC and conventional combustion, thus suggesting that LTC may not necessarily defeat the soot-NO tradeoff, but shift its behavior to lower NO/soot concentration regimes.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Nitrogen Enriched Intake Air Supplied by High Flux Membranes for the Reduction of Diesel NOx Emissions

980177

View Details

TECHNICAL PAPER

Experimental Investigations on Performance and Emission Characteristics of Diesel Fuel Blended with 2-Ethoxy Ethyl Acetate and 2-Butoxy Ethanol

2008-01-1681

View Details

TECHNICAL PAPER

Reliable Catalytic Particulate Trap Regeneration by Exhaust Hydrocarbon Enrichment

932661

View Details

X