Browse Publications Technical Papers 2011-01-2094
2011-08-30

Microkinetic Modelling for Propane Oxidation in Channel Flows of a Silver-Based Automotive Catalytic Converter 2011-01-2094

Computational Fluid Dynamics (CFD) is used to simulate chemical reactions and transport phenomena occurring in a single channel of a honeycomb-type automotive catalytic converter under lean burn combustion. Microkinetic analysis is adopted to develop a detailed elementary reaction mechanism for propane oxidation on a silver catalyst. Activation energies are calculated based on the theory of the Unity Bond Index-Quadratic Exponential Potential (UBI-QEP) method. The order-of-magnitude of the pre-exponential factors is obtained from Transition State Theory (TST). Sensitivity analysis is applied to identify the important elementary steps and refine the pre-exponential factors of these reactions. These pre-exponential factors depend on inlet temperatures and propane concentration; therefore optimised pre-exponential factors are written in polynomial forms. The results of numerical simulations are validated by comparison with experimental data.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
X