Browse Publications Technical Papers 2012-01-0002
2012-04-16

Software Function Allocation and Configuration of an AUTOSAR-Compliant System 2012-01-0002

The software part of an automotive embedded system continues to increase significantly. It enables the development of new functionalities and it may improve the quality and comfort of driver assistance functions. However, the design of such functions becomes a complex task involving networked ECUs (Electronic Control Unit), several sensors/actuators and a set of embedded networks.
The introduction of Model-Based Development (MBD) in the automotive field promised to improve the development process by allowing continuity between requirements definition, system design and the distributed system implementation. Further, the definition of AUTOSAR consortium standardized the design of such automotive embedded system by allowing the portability of software functions on the hardware architecture and their reuse. It defines a set of rules and interfaces to design, interconnect, deploy and configure a set of application software components (SWCs).
However, designing an embedded system according to AUTOSAR standard necessitates the configuration of thousands of parameters and requires several software allocation decisions. Each decision may influence the system performance and also the development cost. This architectural complexity leads to a large design decision space which is difficult to be explored without using an analytical method or a design tool. For example, mapping software components (SWCs) to ECUs may affect the system performance.
Actually, this phase of configuration and software allocation is performed manually using engineering and system architect knowledge. AUTOSAR provide a methodology for the software development of an Electricals/Electronics (E/E) system. However, this method doesn't guide the designer to deploy and bring a high-level software function onto a set of SWCs and then SWCs to ECUs.
In this paper we present a model-based methodology to optimize software allocation and component configuration of an AUTOSAR system. This methodology relies on a multi-objective evolutionary algorithm which is characterized by its composability and speed performance. This algorithm is combined with a model-based system analysis engine permitting to evaluate system performance objectives. The objectives considered here are the CPU load, network load and functions response times.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Timing Protection in Multifunctional and Safety-Related Automotive Control Systems

2009-01-0757

View Details

JOURNAL ARTICLE

Challenges in Real Time Controls Simulation (Hardware-In-the-Loop) in Active Safety for Subsystem Level Software Verification

2011-01-0450

View Details

TECHNICAL PAPER

On Reliable Communication and Group Membership in Safety-Relevant Automotive Electronic Systems

2007-01-1715

View Details

X