A Bayesian Inference based Model Interpolation and Extrapolation

Paper #:
  • 2012-01-0223

Published:
  • 2012-04-16
Citation:
Zhan, Z., Fu, Y., Yang, R., Xi, Z. et al., "A Bayesian Inference based Model Interpolation and Extrapolation," SAE Int. J. Mater. Manf. 5(2):357-364, 2012, https://doi.org/10.4271/2012-01-0223.
Pages:
8
Abstract:
Model validation is a process to assess the validity and predictive capabilities of a computer model by comparing simulation results with test data for its intended use of the model. One of the key difficulties for model validation is to evaluate the quality of a computer model at different test configurations in design space, and interpolate or extrapolate the evaluation results to untested new design configurations. In this paper, an integrated model interpolation and extrapolation framework based on Bayesian inference and Response Surface Models (RSM) is proposed to validate the designs both within and outside of the original design space. Bayesian inference is first applied to quantify the distributions' hyper-parameters of the bias between test and CAE data in the validation domain. Then, the hyper-parameters are extrapolated from the design configurations to untested new design. They are then followed by the prediction interval of responses at the new design points. A vehicle design of front impact example is used to demonstrate the proposed methodology.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Technical Paper / Journal Article
2010-10-19
Article
2017-03-13
Training / Education
2018-07-16
Training / Education
2018-02-05