Thermal Analysis of a High-Power Lithium-Ion Battery System with Indirect Air Cooling

Paper #:
  • 2012-01-0333

Published:
  • 2012-04-16
DOI:
  • 10.4271/2012-01-0333
Citation:
Teng, H., "Thermal Analysis of a High-Power Lithium-Ion Battery System with Indirect Air Cooling," SAE Int. J. Alt. Power. 1(1):79-88, 2012, https://doi.org/10.4271/2012-01-0333.
Author(s):
Pages:
10
Abstract:
Thermal behavior of a lithium-ion (Li-ion) battery module for hybrid electrical vehicle (HEV) applications is analyzed in this study. The module is stacked with 12 high-power pouch Li-ion battery cells. The cells are cooled indirectly with air through aluminum fins sandwiched between each two cells in the module, and each of the cooling fins has an extended cooling surface exposed in the cooling air flow channel. The cell temperatures are analyzed using a quasi-dimensional model under both the transient module load in a user-defined cycle for the battery system utilizations and an equivalent continuous load in the cycle. The cell thermal behavior is evaluated with the volume averaged cell temperature and the cell heat transfer is characterized with resistances for all thermal links in the heat transfer path from the cell to the cooling air. Simulations results are compared with measurements. Good agreement is observed between the simulated and measured cell temperatures. The results of this analysis demonstrate that the method developed in this study is reliable for characterizing thermal behavior of the Li-ion battery systems with similar structures and cooling methods.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Book
2013-07-01
Technical Paper / Journal Article
2011-04-12
Technical Paper / Journal Article
2011-04-12
Article
2016-11-15
Technical Paper / Journal Article
2011-04-12