Validation and Modeling of Transient Aerodynamic Loads Acting on a Simplified Passenger Car Model in Sinusoidal Motion

Paper #:
  • 2012-01-0447

  • 2012-04-16
  • 10.4271/2012-01-0447
Kawakami, M., Sato, N., Aschwanden, P., Mueller, J. et al., "Validation and Modeling of Transient Aerodynamic Loads Acting on a Simplified Passenger Car Model in Sinusoidal Motion," SAE Int. J. Passeng. Cars - Mech. Syst. 5(1):324-339, 2012, doi:10.4271/2012-01-0447.
Dynamic wind-tunnel tests of a simplified passenger car model were conducted using a two-degree-of-freedom model shaker. Time-resolved aerodynamic loads were derived from a built-in six-component balance and other sensors while the model underwent sinusoidal heaving and pitching motions at frequencies up to 8 Hz. The experimental results showed that frequency-dependent gains and phase differences between the model height/angle and the aerodynamic loads are in close agreement with those predicted by large-eddy simulation (LES) using an arbitrary Lagrangian-Eulerian (ALE) method. Based on these findings, transient aerodynamic loads associated with lateral motions were also estimated by LES analysis.Based on the above results, a full-unsteady aerodynamic load model was then derived in the form of a linear transfer function. The force and moment fluctuations associated with the vertical and lateral motions are well described by the full-unsteady aerodynamic load model. This load model integrates added mass and moment-of-inertia terms into the quasi-unsteady model that takes into account the effect of the motion rate as an equivalent change in the relative inflow angle. Vertical motion analysis of a nominal passenger car model coupled with the full-unsteady aerodynamic load model showed that the transient aerodynamic loads affect the frequency response in such a way as to reduce its resonance frequency. The added mass and moment-of-inertia terms were eventually confirmed to have little effect on the vehicle dynamics; it should, however, be mentioned that their inclusion is inevitable in the modeling of transient aerodynamic loads, which inherently involves the added mass effect.
SAE MOBILUS Subscriber? You may already have access.
Members save up to 40% off list price.
HTML for Linking to Page
Page URL

Related Items

Training / Education
Training / Education