Primary Breakup Model for Turbulent Liquid Jet Based on Ligament Evolution

Paper #:
  • 2012-01-0460

Published:
  • 2012-04-16
DOI:
  • 10.4271/2012-01-0460
Citation:
Brusiani, F., Bianchi, G., and Tiberi, A., "Primary Breakup Model for Turbulent Liquid Jet Based on Ligament Evolution," SAE Technical Paper 2012-01-0460, 2012, doi:10.4271/2012-01-0460.
Pages:
17
Abstract:
The overall performance of direct injection (DI) engines is strictly correlated to the fuel liquid spray evolution into the cylinder volume. More in detail, spray behavior can drastically affect mixture formation, combustion efficiency, cycle to cycle engine variability, soot amount, and lubricant contamination. For this reason, in DI engine an accurate numerical reproduction of the spray behavior is mandatory. In order to improve the spray simulation accuracy, authors defined a new atomization model based on experimental evidences about ligament and droplet formations from a turbulent liquid jet surface. The proposed atomization approach was based on the assumption that the droplet stripping in a turbulent liquid jet is mainly linked to ligament formations. Reynolds-averaged Navier Stokes (RANS) simulation method was adopted for the continuum phase while the liquid discrete phase is managed by Lagrangian approach. To simulate the complete evolution of the injected droplets, the proposed atomization model was coupled to a secondary breakup model based on Kelvin-Helmholtz (KH) instability equations. The KH secondary breakup model was tuned in order to provide non-dimensional breakup time fitting experimental evidences all over the range of droplet Weber numbers. To test the new atomization model, a multi-hole high pressure gasoline direct injector was considered. In the present paper, simulation results are compared to experimental ones in terms of overall spray evolution along the injection period, local droplet diameter, and droplet velocity distribution.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Technical Paper / Journal Article
2010-10-25
Training / Education
1999-09-27
Article
2016-09-06
Technical Paper / Journal Article
2010-09-28
Technical Paper / Journal Article
2010-10-19
Training / Education
2017-10-03
Training / Education
2009-01-22