A Sensitivity Analysis Formulation for Steady-State Conjugate Heat Transfer Problems of Industrial Size

Paper #:
  • 2012-01-0911

Published:
  • 2012-04-16
Citation:
Rauch, C., "A Sensitivity Analysis Formulation for Steady-State Conjugate Heat Transfer Problems of Industrial Size," SAE Int. J. Passeng. Cars - Mech. Syst. 5(1):656-676, 2012, https://doi.org/10.4271/2012-01-0911.
Pages:
21
Abstract:
In recent years, developments in virtual prototyping have gained significant interest. The promise of cost savings and the need for rapid simulations in order to be able to offer various platforms has led to automated coupling of software for various physical models. But relying heavily on simulation necessitates confidence in the results obtained. By incorporating various physical models the number of parameters to be set increases. The uncertainties associated with these input parameters are propagated to the simulation results. Uncertainty analysis aims at quantifying those influences. In this paper local first order sensitivity analysis for conjugate heat transfer problems including cavity radiation is introduced. The issue of memory requirement associated with this approach for industrial sized cases is discussed. A reformulation of sensitivity coefficients derived by the author previously for view factor, emissivity, heat transfer coefficient, and conductance is presented using the principle of reciprocity. The resulting uncertainty coefficients are compared to the standard approach for those parameters. A simple numerical stability analysis is conducted and the danger of neglecting interdependencies of the heat transfer modes is shown along with a study on the range of applicability of those factors.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$28.00
Mail
$28.00
Members save up to 42% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Article
2017-07-26
Training / Education
2017-10-27
Technical Paper / Journal Article
2011-04-12
Technical Paper / Journal Article
2009-11-03