Browse Publications Technical Papers 2012-01-1015
2012-04-16

Optimization of Rule-Based Control Strategy for a Hydraulic-Electric Hybrid Light Urban Vehicle Based on Dynamic Programming 2012-01-1015

This paper presents a low-cost path for extending the range of small urban pure electric vehicles by hydraulic hybridization. Energy management strategies are investigated to improve the electric range, component efficiencies, as well as battery usable capacity. As a starting point, a rule-based control strategy is derived by analysis of synergistic effects of lead-acid batteries, high efficient operating region of DC motor and the hydraulic pump/motor. Then, Dynamic Programming (DP) is used as a benchmark to find the optimal control trajectories for DC motor and Hydraulic Pump/Motor. Implementable rules are derived by studying the optimal control trajectories from DP. With new improved rules implemented, simulation results show electric range improvement due to increased battery usable capacity and higher average DC motor operating efficiency.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
We also recommend:
TECHNICAL PAPER

A Reliable, Highly Optimized, Lead-Acid Battery (RHOLAB) for Affordable HEVs - A Foresight Vehicle Project

2002-01-1974

View Details

TECHNICAL PAPER

High Voltage Hybrid Battery Tray Design Optimization

2011-01-0671

View Details

TECHNICAL PAPER

Electric Vehicle Cold Start Range Estimation through Battery-in-Loop Simulations within a Virtual Driving Environment

2020-01-0453

View Details

X