Browse Publications Technical Papers 2012-01-1113
2012-04-16

Chemical Kinetics Study on Effect of Pressure and Fuel, O 2 and N 2 Molar Concentrations on Hydrocarbon Ignition Process 2012-01-1113

Ignition process chemistry was analyzed using a detailed chemical kinetic model of n-heptane generated by KUCRS (Knowledge-basing Utilities for Complex Reaction Systems), wherein pressure-dependent rate constants of the O₂ addition to alkyl radicals and hydroperoxy alkyl radicals and the thermal decomposition of ketohydroperoxides have been introduced. Then, the effect of the initial pressure and the individual effects of the initial fuel, O₂ and N₂ molar concentrations on a relationship between the initial temperature and the ignition delay were discussed. When the initial temperature increases, the branch of C₇H₁₄OOH removal into the second O₂ addition and the decomposition into C₇H₁₄cyO and OH is more sensitive to the pressure and the O₂ concentration, and thus, the LTO preparation phase is more affected by the pressure and the O₂ concentration. The LTO phase terminates mainly by the OH removal by intermediate species. When the pressure and the O₂ concentration increase, the activated second O₂ addition to C₇H₁₄OOH causes intermediate species to accumulate less efficiently, and thus, the LTO end temperature to increase. A period of the thermal ignition preparation phase is controlled by the rate of H₂O₂ (+ M) = OH + OH (+ M). When the pressure increases, the rate of this reaction increases by the dependence order of about 2, and due to the proportional increase in the whole gas concentration, the ignition delay shortens by the dependence order of about 1 in the blue-flame dominant region.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Electronic and Atomistic Roles of Cordierite Substrate in Sintering of Washcoated Catalysts for Automotive Exhaust Gas Emissions Control: Multi-scale Computational Chemistry Approach based on Ultra-Accelerated Quantum Chemical Molecular Dynamics Method

2012-01-1292

View Details

TECHNICAL PAPER

Plasma-Catalytic Treatment of Organic Compounds in Atmospheric Pressure Non-Equilibrium Discharges

982427

View Details

JOURNAL ARTICLE

Fuel Quality and Diesel Injector Deposits

2012-01-1693

View Details

X