Browse Publications Technical Papers 2012-01-1664
2012-09-10

Reduction of Heavy-Duty Diesel Exhaust Particle Number and Mass at Low Exhaust Temperature Driving by the DOC and the SCR 2012-01-1664

The effect of SCR on nanoparticle emissions has been a subject for some recent diesel particle emission related studies. In this study, the effect of after-treatment (DOC and SCR) on particle emissions was studied with a heavy-duty off-road diesel engine (emission level stage 3b with an SCR). A special “transient cold test cycle” (TCTC) was designed to describe the SCR system operation at low exhaust gas temperatures. The particle instrumentation made it possible to measure on-line the particle number concentration, particle size distribution and chemical composition of particles. The largest particle number concentrations were measured after the exhaust manifold. The exhaust after-treatment was observed to reduce the total particle number concentration by 82.5% with the DOC and 95.7% with the DOC+SCR. Also the mean particle composition was affected by the after-treatment; while the organics formed the main fraction of the particulate mass without exhaust after-treatment, after the DOC and especially after the DOC+SCR the organic particulate matter was reduced so that most significant particle fraction was soot. The effect of after-treatment was similar both on exhaust particle number and mass concentration of organics. The SCR system itself was not observed to cause an increase in particle number concentrations by promoting new particle formation. In general, the results indicate that the semi-volatile organic fraction, formed in exhaust cooling and dilution process, can play a significant role in the PM emissions of a modern off-road diesel engine in low exhaust temperature situations. On the other hand, the semi-volatile components, which participate in gas-to-particle conversion during cooling and dilution, were effectively removed by exhaust after-treatment.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
We also recommend:
TECHNICAL PAPER

Trapping Performance of Diesel Particulate Filters

900107

View Details

TECHNICAL PAPER

Towards Quantitative Prediction of Urea Thermo-Hydrolysis and Deposits Formation in Exhaust Selective Catalytic Reduction (SCR) Systems

2019-01-0992

View Details

TECHNICAL PAPER

Nano Particulate Matter Evolution in a CFR1065 Dilution Tunnel

2009-01-2672

View Details

X